Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

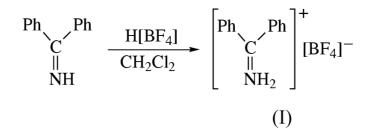
## Javier A. Cabeza,<sup>a</sup> Ignacio del Río,<sup>a</sup> Marta Suárez<sup>a</sup> and Santiago García-Granda<sup>b</sup>\*

<sup>a</sup>Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Avda. Julián Clavería, 8, 33006 Oviedo, Spain, and <sup>b</sup>Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Avda. Julián Clavería, 8, 33006 Oviedo, Spain

Correspondence e-mail: sgg@sauron.quimica.uniovi.es

#### Key indicators

Single-crystal X-ray study T = 200 KMean  $\sigma(C-C) = 0.004 \text{ Å}$  R factor = 0.060 wR factor = 0.196 Data-to-parameter ratio = 10.5

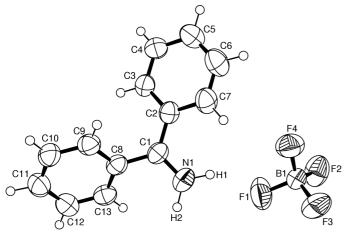

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The reaction of benzophenone imine with an excess of tetrafluoroboric acid in dichloromethane yielded the title compound,  $C_{13}H_{12}N^+ \cdot BF_4^-$ . The cation is non-planar and the crystal structure is stabilized by  $N-H \cdot \cdot \cdot F$  and  $C-H \cdot \cdot \cdot F$  short contacts.

Benzophenone iminium tetrafluoroborate

Received 4 March 2002 Accepted 11 March 2002 Online 22 March 2002

## Comment

Interest in the reactivity of late-transition-metal-amido complexes has grown considerably in the recent years, as a consequence of the relative scarcity of such compounds and of their potential use in C-N bond-forming reactions (Cabeza et al., 1998). In this field, we have recently reported the first insertion of a non-activated alkyne into a metal-nitrogen bond, achieved with a triruthenium cluster derived from benzophenone imine (Cabeza et al., 1997). In an extension of the interesting reactivity observed for these ruthenium complexes, we have studied the reactivity of benzophenone imine-ruthenium complexes with alkyne ligands and protic acids. In this context, the reaction of the binuclear ruthenium complex [Ru<sub>2</sub>(N=CPh<sub>2</sub>)(CPh=CHPh)(CO)<sub>6</sub>] (Cabeza et al., 1997) with an excess of tetrafluoroboric acid under a CO atmosphere gave the title compound as a by-product. This can also be prepared in high yield by treating benzophenone imine with an excess of tetrafluoroboric acid in dichloromethane.




The cation is non-planar; dihedral angle between the two phenyl rings is 57.8 (2)°. The crystal structure is stabilized by  $N-H\cdots F$  and  $C-H\cdots F$  short contacts (Table 2).

#### **Experimental**

An excess of tetrafluoroboric acid (54% wt in diethyl ether, ca 0.1 ml) was added to a solution of benzophenone imine (103 µl, 0.614 mmol) in dichloromethane (20 ml). The mixture was stirred at room temperature for 5 min and the solvent removed under reduced pressure. The white residue was washed with diethyl ether (2 × 10 ml) and dried *in vacuo* to afford 155 mg (94%) of the title compound. Crystallization from CH<sub>2</sub>Cl<sub>2</sub>/hexane at room temperature was achieved by slow liquid–liquid diffusion.

 $\odot$  2002 International Union of Crystallography Printed in Great Britain – all rights reserved



#### Figure 1

A view of the title compound. Displacement ellipsoids are shown at the 50% probability level.

Crystal data

| $C_{13}H_{12}N^+ \cdot BF_4^-$ | $D_x = 1.385 \text{ Mg m}^{-3}$       |
|--------------------------------|---------------------------------------|
| $M_r = 269.05$                 | Cu $K\alpha$ radiation                |
| Monoclinic, $P2_1/n$           | Cell parameters from 2348             |
| a = 5.9727 (4)  Å              | reflections                           |
| b = 15.082(1) Å                | $\theta = 2-70^{\circ}$               |
| c = 14.336(1)  Å               | $\mu = 1.05 \text{ mm}^{-1}$          |
| $\beta = 91.895 \ (4)^{\circ}$ | T = 200 (2)  K                        |
| $V = 1290.72 (15) \text{ Å}^3$ | Block, white                          |
| Z = 4                          | $0.25$ $\times$ 0.10 $\times$ 0.08 mm |

#### Data collection

Nonius KappaCCD diffractometer  $\varphi$  scans Absorption correction: none 11038 measured reflections 2306 independent reflections 1624 reflections with  $I > 2\sigma(I)$ 

#### Refinement

Refinement on  $F^2$   $R[F^2 > 2\sigma(F^2)] = 0.060$   $wR(F^2) = 0.196$  S = 1.102306 reflections 220 parameters All H-atom parameters refined  $\begin{aligned} R_{\rm int} &= 0.065\\ \theta_{\rm max} &= 68.4^\circ\\ h &= 0 \rightarrow 7\\ k &= 0 \rightarrow 18\\ l &= -17 \rightarrow 17 \end{aligned}$ 

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1069P)^{2} + 0.3137P]$ where  $P = (F_{o}^{2} + 2F_{c}^{2})/3$  $(\Delta/\sigma)_{max} = 0.001$  $\Delta\rho_{max} = 0.32 \text{ e} \text{ Å}^{-3}$  $\Delta\rho_{min} = -0.28 \text{ e} \text{ Å}^{-3}$ 

### Table 1

Selected geometric parameters (Å, °).

| C1-N1<br>C1-C2 | 1.300 (3)<br>1.460 (4) | C1-C8        | 1.474 (4) |
|----------------|------------------------|--------------|-----------|
| C8-C1-C2-C3    | -28.8(4)               | C2-C1-C8-C9  | -38.0 (4) |
| N1-C1-C2-C7    | -26.8(4)               | N1-C1-C8-C13 | -36.7 (4) |

# Table 2Hydrogen-bonding geometry (Å, °).

| $D - H \cdot \cdot \cdot A$             | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------------------|----------|-------------------------|--------------|---------------------------|
| N1-H1···F1                              | 0.93 (4) | 1.96 (4)                | 2.786 (4)    | 147 (4)                   |
| $N1 - H2 \cdot \cdot \cdot F3^{i}$      | 0.97 (5) | 1.83 (4)                | 2.804 (3)    | 175 (4)                   |
| $C7-H7\cdots F4$                        | 0.95 (3) | 2.43 (3)                | 3.230 (4)    | 142 (2)                   |
| $C11\!-\!H11\!\cdot\cdot\cdot\!F4^{ii}$ | 1.02 (4) | 2.31 (4)                | 3.183 (4)    | 143 (3)                   |

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii)  $\frac{3}{2} + x$ ,  $\frac{1}{2} - y$ ,  $\frac{1}{2} + z$ .

Data collection: *COLLECT* (Nonius, 2000); cell refinement: *HKL SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *HKL DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SHELXS86* (Sheldrick, 1985); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

We thank the Spanish DGESIC (PB98-1555 and BQU2000-0219) and FICYT (PR-01-GE-4) for financial support.

#### References

- Cabeza, J. A., del Río, I., Moreno, M., Riera, V. & Grepioni, F. (1998). Organometallics, **17**, 3027–3033.
- Cabeza, J. A., del Río, I., Franco, R. J., Grepioni, F. & Riera, V. (1997). Organometallics, 16, 2763–2764.
- Farrugia, L. J. (1997). ORTEP3. J. Appl. Cryst. 30, 565.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger and R. Goddard, pp. 175–189. Oxford University Press.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.